Search results

1 – 10 of 151
Article
Publication date: 1 February 1993

M. HASNAOUI, P. VASSEUR and E. BILGEN

Thermally driven flow in a tall inclined cavity bounded by porous layers is studied analytically and numerically. A constant heat flux is applied for heating and cooling of two…

Abstract

Thermally driven flow in a tall inclined cavity bounded by porous layers is studied analytically and numerically. A constant heat flux is applied for heating and cooling of two opposing walls of the cavity, while the other two are insulated. The Beavers—Joseph slip condition on velocity is applied at the interface between the fluid and porous layers. An analytical solution is obtained by assuming parallel flow in the core region of the cavity and a numerical solution by solving the complete governing equations. The flow and heat transfer variables are obtained in terms of the Rayleigh number, Ra, slip condition parameter N and angle of inclination of the cavity Φ. The critical Rayleigh numbers for the onset of convection in a layer heated from below are predicted for various hydrodynamic boundary conditions. The results for a fluid layer bounded by solid walls (N → ∞) and by free surfaces (N → 0) emerge from the present analysis as limiting cases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 1995

K. Aboubi, L. Robillard, E. Bilgen and P. Vasseur

The present study deals with two‐dimensional convective motion due tothe effect of a centrifugal force field on a fluid contained between twohorizontal concentric cylinders, for…

Abstract

The present study deals with two‐dimensional convective motion due to the effect of a centrifugal force field on a fluid contained between two horizontal concentric cylinders, for the particular case of an adiabatic inner boundary (zero heat flux) and a constant heat flux imposed on the outer boundary. The normal terrestrial gravity is considered negligible. Governing equations for a two‐dimensional flow field are solved using analytical and numerical techniques. Based on a concentric flow approximation, the analytical solution is obtained in terms of the Rayleigh number and the radius ratio. The numerical solution is based on a finite difference method. Results indicate that the flow field always consists of two symmetrical cells at incipient convection even at radius ratios near unity. A good agreement is found between the analytical and numerical solutions at finite amplitude convection.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1998

P. Vasseur and G. Degan

Natural convection from a semi‐infinite vertical plate embedded in a fluid saturated porous medium is studied both analytically and numerically. The plate is assumed to be heated…

Abstract

Natural convection from a semi‐infinite vertical plate embedded in a fluid saturated porous medium is studied both analytically and numerically. The plate is assumed to be heated isothermally or by a constant heat flux. The porous medium, modeled according to Darcy’s law, is anisotropic in permeability with its principal axes oriented in a direction that is oblique to the gravity vector. In the large Rayleigh number limit, the governing boundary‐layer equations are solved in closed form, using a similarity transformation. Comparisons between the numerical solution of the full equations and analytical solutions are presented for a wide range of the governing parameters. The effects of the anisotropic permeability ratio K*, of the orientation angle of the principal axes θ, and of the Rayleigh number RH on the flow and heat transfer are investigated. Results indicate that the anisotropic properties of the porous medium considerably modify the heat transfer, velocity and temperature profiles from that expected under isotropic conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1993

E. NTIBARUFATA, M. HASNAOUI, E. BILGEN and P. VASSEUR

The aim of the present investigation was to study numerically the natural convection in partitioned enclosures with localized heating from below. Two‐dimensional equations of…

Abstract

The aim of the present investigation was to study numerically the natural convection in partitioned enclosures with localized heating from below. Two‐dimensional equations of conservation of mass, momentum and energy, with the Boussinesq approximation are solved using finite difference method. Various geometrical parameters were: aspect ratio A = 0.4−0.6, isothermal surface length B = 0.5, its position C = 0.3, partition position D = 0.5−1.0, its length E = 0.2−0.6, heat source length X = 0.05−1.00, and its position ε = variable. The Rayleigh number was varied from 103 to 106. The results are reduced in terms of the normalized Nusselt number as a function of the Rayleigh number, and other non‐dimensional geometrical parameters. The isotherms and streamlines are produced for various Rayleigh numbers and geometrical conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 1998

K. Aboubi, L. Robillard and P. Vasseur

The natural two‐dimensional convection taking place between horizontal concentric cylinders filled with a satured anisotropic porous medium is studied numerically. The anisotropy…

Abstract

The natural two‐dimensional convection taking place between horizontal concentric cylinders filled with a satured anisotropic porous medium is studied numerically. The anisotropy concerns exclusively the permeability. Isothermal boundary conditions are applied on both inner and outer boundaries, with the outer boundary being warmer. The effects of the anisotropic permeability ratio K*, of the orientation angle of the principal axes defined by γ, and of the Rayleigh number Ra* on the flow and heat transfer are investigated. Results indicate that a net circulating flow around the annulus is generated, except for values of γ that preserve the symmetry of flow conditions with respect to the vertical diameter. It is also shown that the anisotropic part of the resistivity tensor is equivalent to a magnetic resistivity tensor.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2003

R. Bennacer, A. Mahidjiba, P. Vasseur, H. Beji and R. Duval

Natural convection with Soret effect in a binary fluid saturating a shallow horizontal porous layer is studied both numerically and analytically. The vertical walls of the…

Abstract

Natural convection with Soret effect in a binary fluid saturating a shallow horizontal porous layer is studied both numerically and analytically. The vertical walls of the enclosure are heated and cooled by uniform heat fluxes and a solutal gradient is imposed vertically. In the formulation of the problem, we use the Darcy model and the density variation is taken into account by the Boussinesq approximation. The governing parameters of the problem are the aspect ratio, A, the thermal Rayleigh number, RT, the buoyancy ratio, N, the Lewis number, Le and the Soret coefficient, NS. The analytical solution, based on the parallel flow approximation, is found to be in good agreement with a numerical solution of the full governing equations. In the presence of a vertical destabilizing concentration gradient, the existence of both natural and antinatural flows is demonstrated. When the vertical concentration gradient is stabilizing, multiple steady state solutions are possible in a range of buoyancy ratio, N, that depends strongly on the Soret coefficient, NS.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2021

Beatriz Machado dos Santos, Ludimila Silva Salles de Sá and Jian Su

The purpose of this work is to propose the generalized integral transform technique (GITT) for the investigation of two-dimensional steady-state natural convection in a horizontal…

Abstract

Purpose

The purpose of this work is to propose the generalized integral transform technique (GITT) for the investigation of two-dimensional steady-state natural convection in a horizontal annular sector containing heat-generating porous medium.

Design/methodology/approach

GITT was used to investigate steady-state natural convection in a horizontal annular sector containing heat-generating porous medium. The governing equations in stream function formulation are integral transformed in the azimuthal direction, with the resulting system of nonlinear ordinary differential equations numerically solved by finite difference method. The GITT solutions are validated by comparison with fully numerical solutions by finite difference method, showing excellent agreement and convergence with low computational cost.

Findings

The effects of increasing Rayleigh number are more noticeable in stream function, whereas less significant for temperature. With decreasing annular sector angle from π to π/6, a reduction in the maximum temperature and stream function was noticed. While the two counter-rotating vortical structure is common for all annular sector angles investigated, the relative size of the two vortices varies with decreasing sector angle, with the vortex near the outer radius of the cavity becoming dominant. The annular sector angle affects strongly the maximum temperature and the partition of heat transfer on the inner and outer surfaces of the annular sector with heat-generating porous medium.

Originality/value

The strong effects of the annular sector angle on natural convection in annular sectors containing heat-generating porous medium are investigated for the first time. The proposed hybrid analytical–numerical approach can be applied in other convection problems in cylindrical or annular configurations, with or without porous medium. It shows potential for applications in practical convection problems in the nuclear and other industries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Marketing in Customer Technology Environments
Type: Book
ISBN: 978-1-83909-601-3

Article
Publication date: 19 July 2019

Elaine Lim and Yew Mun Hung

By solving a long-wave evolution model numerically for power-law fluids, the authors aim to investigate the hydrodynamic and thermal characteristics of thermocapillary flow in an…

Abstract

Purpose

By solving a long-wave evolution model numerically for power-law fluids, the authors aim to investigate the hydrodynamic and thermal characteristics of thermocapillary flow in an evaporating thin liquid film of pseudoplastic fluid.

Design/methodology/approach

The flow reversal attributed to the thermocapillary action is manifestly discernible through the streamline plots.

Findings

The thermocapillary strength is closely related to the viscosity of the fluid, besides its surface tension. The thermocapillary flow prevails in both Newtonian and pseudoplastic fluids at a large Marangoni number and the thermocapillary effect is more significant in the former. The overestimate in the Newtonian fluid is larger than that in the pseudoplastic fluid, owing to the shear-thinning characteristics of the latter.

Originality/value

This study provides insights into the essential attributes of the underlying flow characteristics in affecting the thermal behavior of thermocapillary convection in an evaporating thin liquid film of the shear-thinning fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 11 December 2023

Burcu Kıvılcım Zorba

Cities and the tourism industry are closely related. Cities are destinations that serve for the welfare of the people and the tourists visiting the city. The tourism sector, on…

Abstract

Cities and the tourism industry are closely related. Cities are destinations that serve for the welfare of the people and the tourists visiting the city. The tourism sector, on the other hand, uses the environmental and sociocultural resources of the cities, ensures that these resources are transferred to the future by protecting them, and contributes to the economic development of the cities by creating employment. Several urban models have been created within this framework to make urban tourism viable. Eco-city tourism is one of these urban design concepts. Eco-city tourism aims to protect cities from sociocultural, economic, and environmental factors while promoting their growth. Eco-city tourism, which includes a number of practices such as prevention of pollution, protection of biological diversity, consumption of renewable energy, production of local products, employment, and protection of cultural values, is easily implement in cities in an integrated manner with smart technological systems. Smart building and smart energy systems for energy saving, mobile applications, Wi-Fi, big data, Internet of Things (IoT), and cloud computing are among the smart technological systems used in the tourism sector.

1 – 10 of 151